[consulta: 16 mayo 2023]. DOI
10.35940/ijrte.B3167.078219. Disponible en:
www.ijrte.org.
[14]. ROJAS, Y.A.P. y LÓPEZ, E.V., 2021.
COMPRESSIVE STRENGTH OF
CONCRETE MADE WITH ELECTRIC ARC
FURNACE SLAG AND RECYCLED
GROUND GLASS AS REPLACEMENT OF
COARSE AND FINE AGGREGATE. Revista
Ingeniería de Construcción [en línea], vol. 36,
no. 3, [consulta: 16 mayo 2023]. ISSN 0718-
5073. DOI 10.7764/RIC.00007.21. Disponible
en:
https://www.ricuc.cl/index.php/ric/article/vie
w/1198.
[15]. ALHAZMI, H., SHAH, S.A.R. y BASHEER,
M.A., 2021. Performance Evaluation of Road
Pavement Green Concrete: An Application of
Advance Decision-Making Approach before
Life Cycle Assessment. Coatings 2021, Vol.
11, Page 74 [en línea], vol. 11, no. 1, [consulta:
16 mayo 2023]. ISSN 2079-6412. DOI
10.3390/COATINGS11010074. Disponible
en: https://www.mdpi.com/2079-
6412/11/1/74/htm.
[16]. JOURNAL, S. y JOURNAL, U., [sin fecha].
International Journal of Innovative
Technology and Exploring Engineering
(IJITEE). [en línea], [consulta: 16 mayo 2023].
DOI 10.35940/ijitee.L3742.1081219.
Disponible en: www.ijitee.org.
[17]. Journal, S., & Journal, U. (s. f.). International
Journal of Recent Technology and Engineering
(IJRTE).
https://doi.org/10.35940/ijrte.C5631.098319
[18]. Moustafa, M. A., Ibrahim, A. M. A., Ahmed,
H. O., Khodary, F., & Hassanean, Y. A. (2021).
Studying the Mechanical Properties of Rigid
Pavement Reinforced with Single and Hybrid
Fibers. Civil Engineering and Architecture,
9(6), 1877-1899.
https://doi.org/10.13189/CEA.2021.090620
[19]. ADITYA, C., IRAWAN, D. y SILVIANA, S.,
2021. Implementation of marble waste as
aggregate material rigid pavement. EUREKA:
Physics and Engineering [en línea], vol. 2021,
no. 4, [consulta: 16 mayo 2023]. ISSN 2461-
4262. DOI 10.21303/2461-4262.2021.001932.
Disponible en: http://journal.eu-
jr.eu/engineering/article/view/1932.
[20]. Ali, B., Yilmaz, E., Sohail Jameel, M., Haroon,
W., & Alyousef, R. (2021). Consolidated effect
of fiber-reinforcement and concrete strength
class on mechanical performance, economy
and footprint of concrete for pavement use.
Journal of King Saud University - Engineering
Sciences.
https://doi.org/10.1016/J.JKSUES.2021.09.00
5
[21]. AL-KHEETAN, M.J., RAHMAN, M.M. y
CHAMBERLAIN, D.A., 2019. Moisture
evaluation of concrete pavement treated with
hydrophobic surface impregnants.
https://doi.org/10.1080/10298436.2019.15679
17 [en línea], vol. 21, no. 14, [consulta: 16
mayo 2023]. ISSN 1477268X. DOI
10.1080/10298436.2019.1567917. Disponible
en:
https://www.tandfonline.com/doi/abs/10.1080
/10298436.2019.1567917.
[22]. LAU, C.K., CHEGENIZADEH, A., HTUT,
T.N.S. y NIKRAZ, H., 2020. Performance of
the Steel Fibre Reinforced Rigid Concrete
Pavement in Fatigue. Buildings 2020, Vol. 10,
Page 186 [en línea], vol. 10, no. 10, [consulta:
16 mayo 2023]. ISSN 2075-5309. DOI
10.3390/BUILDINGS10100186. Disponible
en: https://www.mdpi.com/2075-
5309/10/10/186/htm.
[23]. Polo-Mendoza, R., Peñabaena-Niebles, R.,
Giustozzi, F., & Martinez-Arguelles, G.
(2022). Eco-friendly design of Warm mix
asphalt (WMA) with recycled concrete
aggregate (RCA): A case study from a
developing country. Construction and Building
Materials, 326, 126890.
https://doi.org/10.1016/J.CONBUILDMAT.2
022.126890
[24]. Smirnova, O., Kharitonov, A., & Belentsov, Y.
(2019). Influence of polyolefin fibers on the
strength and deformability properties of road
pavement concrete. Journal of Traffic and
Transportation Engineering (English Edition),
6(4), 407-417.
https://doi.org/10.1016/J.JTTE.2017.12.004
[25]. Rejeb, O., Almarzouqi, N., Alhanaee, N.,
Sinclair, T., Alansari, M., Abdulla, F.,
Alsalami, M., & Ghenai, C. (2022). Parametric
analysis and new performance correlation of
the surface conventional rigid pavement